

AI-Powered Adolescent Health: Dimensions, Current Trends and Future Prospects

MANDEEP K CHAWLA¹, RIDHI SHARMA², NAVDEEP KAUR*³

¹Mehr Chand Mahajan DAV College for Women, India,
manu.chw@gmail.com

²Mehr Chand Mahajan DAV College for Women, India,
ridhisharmachd@gmail.com

³Mehr Chand Mahajan DAV College for Women, India,
aulakh83@gmail.com

Abstract:

Adolescence is a critical developmental stage, marked by rapid physical, emotional, and psychological changes, which may give rise to unique health challenges. Artificial intelligence has emerged as a transformative force in addressing these challenges, offering innovative solutions for improving adolescent healthcare. This paper provides significant insights into key dimensions, current trends and future prospects of AI in adolescent health. It explores applications in mental health interventions, remote monitoring, personalized nutrition and fitness, and substance abuse prevention, highlighting the potential for AI-driven systems to enhance healthcare outcomes for adolescents. In particular, AI-powered tools such as machine learning algorithms, predictive analytics and personalized health plans have shown promise in early diagnosis, treatment optimization, and lifestyle management. The paper also addresses significant challenges in the adoption of AI, including ethical concerns, data privacy issues, interoperability and the need for trust and acceptance among adolescents. The review concludes by discussing future directions in fully harnessing AI capabilities to modernize adolescent healthcare.

Keywords: Adolescent Healthcare, Artificial Intelligence, Remote Monitoring, personalized nutrition, Mental Health Intervention, Substance Abuse Prevention.

(Article history: Selected from 3rd NICEDT 2025, Ropar, 14-15 Feb 2025)

I. INTRODUCTION

Adolescence is a critical developmental period that bridges childhood and adulthood, characterized by rapid physical, psychological, and emotional changes. It typically encompasses individuals between the ages of 10 and 19, as defined by the World Health Organization (WHO) [1]. During this stage, adolescent's face numerous health challenges, including obesity, diabetes, mental health disorders, and substance abuse [2]. Furthermore, the behaviors and habits developed during adolescence often set the foundation for health outcomes later in life. As such, addressing the health needs of adolescents is vital for promoting long-term well-being and reducing the risk of chronic conditions in adulthood.

The Centers for Disease Control and Prevention [3] identifies the wide use of innovative technologies as one way to improve adolescent healthcare access. This includes the use of electronic health records, sensor monitoring, telemedicine, predictive modeling and interactive apps which are gradually being put into practice in many adolescent healthcare units. With technological advancements, particularly in Artificial Intelligence (AI), new opportunities have emerged for addressing the unique healthcare needs of adolescents. AI has the potential to transform healthcare by providing more personalized, efficient, and accessible solutions. It can assist in early detection of health issues, optimize treatment plans, and support mental health interventions. The rise of mobile health applications, wearables, and AI-driven diagnostic tools demonstrate the growing role of technology in adolescent healthcare [4, 5].

This paper aims to provide an insight into significant health dimensions, current trends and future prospects of AI in adolescent health. By exploring AI applications in areas such as mental health, remote monitoring in chronic diseases, personalized nutrition and fitness, and substance abuse, we assess its potential to improve healthcare outcomes. Further, the paper addresses challenges and limitations associated with integrating AI into adolescent healthcare, including ethical concerns, data privacy, and the need for trust and acceptance among adolescents. Finally, future directions for AI in this field, highlighting emerging technologies and their potential to revolutionize adolescent health care are discussed.

II. UNDERSTANDING ADOLESCENCE

Adolescence is recognized as a pivotal developmental phase, bridging childhood and adulthood, with an age range defined by the World Health Organization (WHO) and UNICEF as between 10 and 19 years [6]. This period is marked by a rapid

progression of physical, emotional, and cognitive changes that collectively shape a young individual's journey into adulthood. While WHO and UNICEF categorize individuals aged 10-19 as adolescents, the term "youth" is defined by UNICEF to encompass ages 15-24, broadening the scope to include individuals transitioning further into mature roles within society. During adolescence, a significant series of physical transformations occur, primarily driven by hormones such as estrogen and testosterone. These hormones trigger puberty, typically starting between ages 8-14 in girls and 9-14 in boys, resulting in growth spurts, increased muscle mass, and other secondary sexual characteristics [7]. The physical changes often lead to heightened self-consciousness and may influence social interactions, impacting how adolescents perceive themselves and their peers.

Emotional changes are also a hallmark of this developmental stage, as adolescents experience intensified emotions and often mood swings [8]. Emotional regulation skills are not fully developed in early adolescence, leading many teenagers to rely on peer relationships for emotional support over family. Socially, adolescents seek independence from parental guidance, yet they remain vulnerable to external influences, such as peer pressure, and continue to need adult support to navigate these challenges. This tension between independence and the need for guidance is a defining feature of adolescent behavior. Cognitively, adolescents gain improved reasoning, decision-making, and impulse control, with full cognitive maturation extending into late adolescence (around 18-24 years). These advancements allow adolescents to better process and manage their emotions, enhancing their ability to cope with stressors and complex social situations. However, adolescents are still susceptible to risky behaviors due to ongoing brain development, particularly within regions responsible for judgment and risk assessment.

Health concerns during adolescence encompass both physical and mental aspects. Adolescents often encounter physical issues like headaches, back pain, and allergies. Mental health challenges are equally prevalent, with around 10% of young people experiencing conditions such as depression, anxiety, and insomnia [9]. Insomnia often linked with academic pressures, social stress, and lifestyle changes, can disrupt daily functioning and lead to other issues, including substance use. Addressing these concerns early through appropriate interventions is essential for supporting a healthy transition into adulthood. Key aspects of adolescence are summarized in Table 1.

Due to the unstable developmental stage of adolescence, the U.S. Supreme Court ultimately abolished the death penalty for juveniles, recognizing it as cruel and unusual punishment to sentence individuals under 18 to death [10]. This decision was rooted in the understanding that adolescents are not fully mature and their characters are still in formation. Studies [11] on adolescent brain development have shown that the brain continues to develop well into a person's early twenties, underscoring that young people are not yet equipped with the same level of impulse control and judgment as adults.

TABLE I. Summary of key aspects of adolescence

Definition and Age Range	Adolescence is the developmental period between childhood and adulthood, typically ages 10-19. WHO and UNICEF define adolescence as ages 10-19. Youth is defined by UNICEF as ages 15-24.
Physical Changes	Puberty occurs between ages 8-14 in girls and 9-14 in boys. Growth spurts and physical changes are driven by hormones like estrogen and testosterone.
Emotional Changes	Adolescents experience mood swings and new emotions. Emotional regulation improves gradually. They may prefer talking to friends rather than family about emotional problems.
Cognitive Development	Cognitive abilities improve, with better control of emotions and reasoning. Full cognitive development continues into late adolescence (18-24 years). Adolescents seek independence from parents but still need guidance. They are open to outside influences and often reluctant to adult advice.
Common Health Concerns	Physical health issues include allergies, headaches, and back pain. Mental health issues such as insomnia and depression are prevalent. Insomnia can impact daily life and is associated with stress and substance use.

III. AI AND DIMENSIONS OF ADOLESCENCE HEALTH

Adolescents, being the fervent users of technological inventions, are one of the promising populations while designing and advancing modern health care facilities. From employing monitoring devices and preventive steps, to offering advice to adolescents on chronic illnesses, there are numerous prospects in reinforcing adherence to therapies and treatments for promoting holistic health among youth. Artificial intelligence applications in adolescent health might begin by emphasizing early behavioral issue detection, tailored mental health support, and encouraging good lifestyle choices. Adolescents who build up skills and habits to monitor their symptoms and self-manage their wellbeing may benefit from improved outcomes in disease realization and observance. Adolescent-specific interventions that are customized to their needs can be offered by utilizing AI-driven technologies, such as Chabot, machine learning and predictive analytics, to improve accessibility to health resources. So, it is important to understand precisely the dimensions around which technology can be integrated into the provision of healthcare for adolescents. Dimensions which are central to the inclusive health of adolescents are discussed ahead, along with the potential of AI domains in optimizing and accelerating tangible health outcomes among the said population.

A. Detection of Mental Health Issues

Mental health encompasses social, psychological, and emotional well-being, and they all have an impact on our thoughts, feelings, and behaviors in different situations. A person with good mental health can manage stress effectively, work productively, form meaningful relationships, and make sound decisions. It's vital for overall quality of life and contributes to success in personal and professional areas. That is why for any nation, mental health is a significant and highly concerned issue, especially for adolescents, being the prospective nation builders. However, its early diagnosis is as challenging, as is its treatment. The obvious challenges include- lack of mechanistic equipment for preliminary investigation, difficulty in describing an unambiguous model for pinpointing mental illness, and lastly, the dependence on one's self-reporting to the clinician and fear of privacy breach.

In addition to being widely used in many other domains, developments in intelligent machines, computer vision, deep learning (DL), and explainable artificial intelligence (EAI) are being successfully implemented in mental healthcare too. Those have proved excellent means to diagnose, monitor, predict and treat the patients and hence addressed the previously mentioned challenges to a great extent.

A review was conducted by Chang Su et al. [12] focusing the accuracy of suicide risk prediction in children and adolescents. This study developed a machine learning model to identify short- and long-term risk variables and predict suicide behavior in children and adolescents based on their longitudinal clinical records. Quantifiable risk scores were generated for the 41,721 subjects under study using the predictors such as diagnosis, lab-test results, demographics and prescription drugs, encapsulated in routinely collected structured electronic health records (EHR).

The study [13] leverages ML algorithms to predict major psychiatric conditions of anxiety, depression, attention deficit, disruptive behaviors and post-traumatic stress, focusing on individual-level predictions for adolescents. The candidate predictors comprised neural, prenatal, developmental, physiologic, sociocultural, environmental, emotional and cognitive features. Deep learning with artificial neural networks (ANN) and tree-based learning with XGBoost effectively determined the non-linear relationships among predictors and it was robustly modeled with computational psychiatry techniques.

The study [14] focuses on utilizing machine learning algorithms (Decision Tree among others) to detect signs of depression in users based on their activities and behaviors on social network (Facebook). Features such as sentiment analysis, emotional tone, use of certain keywords, interaction patterns (e.g., isolation or reduced engagement), and even profile metadata are analyzed.

The authors in [15] introduces a computational method called iMEGES to prioritize susceptibility genes associated with mental disorders based on an individual's personal genomic data. This helps in identifying genetic predispositions to mental health conditions such as schizophrenia, depression, bipolar disorder etc. It employs deep neural networks (DNNs) to analyze large-scale genomic data and capture complex patterns from genome-wide association studies (GWAS), gene expression data, and other biological datasets to predict which genes are most likely involved in mental disorders.

The authors [16] propose an interpretable predictive prognostic model (PPM) to predict early-stage dementia in a clinical environment, by integrating clinical data, cognitive tests and structural MRI. The model is designed to be both robust and explainable, that not only performs well across different datasets but also provides understandable insights into how the AI makes its predictions. This interpretability is crucial for gaining trust from clinicians and ensuring the model's decisions are transparent. In child and adolescent psychiatry, artificial intelligence (AI) effectively supports the study, characterization, and identification of mental diseases by supplementing physician evaluations with censored data to customize diagnosis and treatment of psychiatric patients.

B. Remote Patient Monitoring (RPM)

Remote health monitoring systems equipped with wearable sensors, actuators, and communication devices enable physicians to evaluate patients' health parameters, monitor critical physiological indicators in real time, and provide feedback from remote locations. Such monitoring devices can be connected to Cloud to provide continual data and using AI algorithms, these devices can provide instant feedback and tailored insights to each individual under observation.

The paper [17] evaluates the effectiveness of a digital health care platform by offering direct patient care for improving glycemic control and reducing hemoglobin A1C (HbA1c) levels in individuals with uncontrolled type 2 diabetes mellitus. The service provides a smartphone app equipped with Bluetooth-enabled glucometer to enable automatic data collection and transfer of readings to a secure physician platform. The system attempts to anticipate when a hypoglycemic episode is likely to happen and take preventative measures by monitoring changes and trends in patients' food, exercise, and blood sugar levels.

ICT tools programmed with ML techniques can be deployed to help monitor clinical trials, which can increase accuracy by easing out the process. The study [18] formulates a conceptual framework consisting of four modules for data collection, transmission, analysis and prediction to monitor clinical trials using physiological datasets captured from a wearable device. After preprocessing and transformations, the system is trained through Support Vector Machine (SVM) and Artificial Neural

Network (ANN). The findings map the classification into three categories, that is, fit, unfit, and undecided participants. The classifications are used to ascertain whether a participant should be permitted to continue in the trial or not. The framework is aimed at reducing the risk in case of transmissible diseases and facilitating rapid intervention during adverse effects of drug upshot on clinical trials.

A Smart Health Monitoring System [19] enabled through machine learning models works remotely by employing five parameters- ECG, body heat, physical orientation, pulsations and pressure. By synchronizing the transmitting and receiver circuit, it aids in predicting diseases, locating physician for consultation and communicating through web-based dashboard.

Applications based on IoT devices outfitted with DL algorithms span from RPM, real-time assessment, pattern identification, to alerts to health care professionals. One such framework [20] targets to monitor vital biological attributes such as temperature, sugar levels, blood pressure, heart rate, sweat analysis, ECG, EEG, and pulse rate, sending data for personalized attention and analysis. Implantable IoT designs serve as agents for wireless transmission, data storage, centralized processing, and portable computation, expediting connectivity among sensors, GPS-enabled ambulances, practitioners, and patients. To mitigate likely health risks, instruments are equipped with Machine Learning capabilities to swiftly review illness severity and carry out suitable actions.

A concussion is a common adolescent injury that can result in a constellation of symptoms, negatively affecting academic performance, neurobiological development, and quality of life. Mobile health technologies, such as apps for patients to report symptoms or wearables to measure physiological metrics like heart rate, have been shown to be promising in health maintenance. This study aims to ascertain the response rate and response rate trends in concussed adolescents reporting their periodic symptoms through mHealth technology [21]. It also looks at how response rate patterns are affected by demographic, temporal, and injury-related factors.

Smartphones offer a valuable platform for engaging adolescents with interventions aimed at preventing key risk behaviors associated with chronic diseases. There is a well-established link between chronic diseases and the six lifestyle risk behaviors: poor diet, physical inactivity, smoking, alcohol use, excessive recreational screen time, and inadequate sleep [22]. Targeting these behaviors is crucial, as they often co-occur and begin to develop during adolescence. With smartphones now integral to daily life, many adolescents already use mobile apps to track their lifestyle choices and support their health.

C. Personalized Nutrition and Physical Fitness

It is prevalent among adolescents that their eating behaviors become increasingly unpredictable and meal schedules fluctuate. The attributed factors are low self-esteem, drive for weight-loss, increased mobility, peer pressures, preoccupation with self-image and alike. As a result, individuals may experience both under-eating and overeating as a reaction to personal stressors. Artificial intelligence has the capability to develop personalized plans for people by considering their food choices, allergies, and activity levels to successfully regulate their weight and enhance their well-being.

The paper [23] presents the design, development, and evaluation of a mobile app intervention specifically aimed at improving the eating habits of adolescents and young adults, especially from disadvantaged backgrounds. The app is designed based on behavior change theories and adapted to the preferences and needs of the target age group. Key features include daily challenges, meal planning assistance, nutritional information, and gamified elements to encourage participation. Social sharing, incentives, and reminders could be added to enhance adherence and enjoyment. Results indicate that psychological abilities (like self-efficacy), reflective motivation (such as fitness), automatic motivation, social support, and physical opportunity (i.e. time) were all factors that helped or hindered the achievement of the desired action. Education, coaching, rewards, persuasion, and approval were identified as relevant intervention functions.

This study examines [24] how cutting-edge teaching strategies affect eating patterns and health consequences of adolescents. The foundation of all instructional strategies is the application of artificial intelligence for reducing obesity and enhancing health among the youth. It aimed to engage students in understanding the significance of healthy eating and its long-term benefits by introducing a curriculum enhanced with contemporary nutritional education, which included the deployment of generative AI models to teach students about the advantages of dietary habits. Post-experiment statistical analysis showed significant changes in individuals' weight, body fat percentage, and body mass index (BMI).

This research explores data-driven approaches which utilize supervised machine learning models to identify patients with Diabetes and cardiovascular diseases. Models were developed to classify cardiovascular, prediabetes, and diabetes detection using feature variables using a public dataset. Various machine learning models namely logistic regression, support vector machines, random forest, and gradient boosting were evaluated for their classification outcomes [25]. Further, a proactive diabetes self-care recommendation system [26] for at-risk patients was proposed guiding food intake and physical workout based on their socioeconomic, cultural, and geographical status.

One of the main issues affecting the health and wellbeing of children with cerebral palsy (CP) is inadequate physical activity (PA), a common physical disability among children and adolescents. For measuring physical activity in an objective manner,

accelerometer-based motion sensors are employed. However, these results are prone to erroneous readings and may considerably undervalue children with cases of severe mobility constraints. Machine learning (ML) models that first classify the PA type and then predict PA intensity or energy expenditure using activity specific regression equations may be more accurate than stand-alone tools for customized observations [27].

D. Substance Abuse Prevention

For every nation, drugs and substance abuse is a crucial matter of concern for their youth population. Drug use typically starts in adolescence and is caused by a confluence of developmental, remedial, societal, emotional, cognitive, and attitudinal aspects. For many, use of psychoactive substances might be restricted to a momentary experimentation, while for others it becomes compulsive habits of use. It is marked by psychological and physical dependence as a result of experimenting with alcohol, tobacco, or other drugs. Psychoactive substance use in childhood and adolescence can disrupt normal psychosocial development and result in emotional, interpersonal, intellectual and physical troubles.

Risk prediction models could be used to spot adolescents who are more likely to take unsafe substances. The authors in [28] used two statistical and machine learning techniques namely penalized multivariate regression and multivariate covariance to jointly predict quantitative grades on three measures- Adolescent Cannabis Problem Questionnaire, Rutgers Alcohol Problems Index and Hooked on Nicotine Checklist based on chosen risk factors. Dataset consisted of cross-sectional data of 270 subjects in age limit of 13–18, of a randomized controlled trial that intervened with adolescent alcohol and/or cannabis usage. Age, early life stress, first-time tobacco and cannabis use, lifetime use of other substances, and first-time cannabis use are the risk factors that have been found influencing as different subsets in the investigation.

Substance use disorder (SUD) treatment for high-risk youth is important to reduce drug overdose deaths prevalent in developing and developed countries. However there exist many disparities in treatment utilizations due to races, family backgrounds and accessibility among other reasons. This study [29] explores the intersections of psychosocial and system-related factors with SUD treatment completion, particularly for individuals receiving publicly funded SUD treatment services. The Chi-square Automatic Interaction Detection (CHAID) approach was employed to examine intersections for SUD treatment completion. The results indicate that SUD treatment outcomes varied based on several factors - level of monitoring and improvement rates, rural and urban background, criminal justice involvement, opioid-use or non-opioid-related disorders, family strengths and social determinants.

In a study [30] undertaken through nationally representative dataset of school going adolescents in US accounts for various channels of peer influence, to investigate alcohol use. It offers a unifying theoretical framework and models 'social interactions' in alcohol consumption via three machine-learning algorithms, while determining extreme gradient boosting algorithm as the best performer. With respect to adolescent drinking, the variables identified as the most important predictors include drinking habits from the previous year, misconceptions about friends' drinking, and the average actual drinking among friends. An effective intervention should concentrate on school peers and adolescents' perceptions about drinking norms, in addition to the history of alcohol use.

Adolescent e-cigarette use is a public health epidemic that is growing more quickly than experts can gather data on risk and protective variables and the long-term effects of usage. Before teenagers reach developmental stages where e-cigarette usage increases, preventative initiatives may benefit from the use of new technologies like machine learning to identify at-risk youngsters and possible intervention targets. The current study [31] investigated a broad range of individual and socioecological factors in connection to patterns of lifetime e-cigarette usage throughout early adolescence using machine learning methods. The results offer precise goals for modifying current substance use prevention initiatives to target early adolescent e-cigarette usage.

The study [32] aims to create or evaluate an automated system that extracts and identifies information about substance use from EHRs (electronic health records) in a pediatric setting (10-20 years of age). This allows healthcare providers to monitor, assess, and potentially intervene in cases of substance use among young patients. It involves deploying knowledge-based NLP (natural language processing) system to detect substance use information from unstructured data from EHRs such as clinical notes, diagnoses, and patient-reported information. Further deep learning model is designed to improve detection capacity by identifying terms, phrases, or indicators related to substance use, like mentions of smoking, alcohol use, or drug consumption. By identifying substance use patterns in real-time, the automated system enables early detection, which can facilitate timely interventions and support preventive measures.

Impressive advantages of AI in healthcare are demonstrated by the growing usage of digital technologies and data in the medical industry. Large volumes of health data are produced as the patient base expands, and they must be analyzed to produce insights that may be put to use. AI's revolutionary potential in healthcare is unlocked by this demand, as well as the requirements for digital health data and tailored medicine. Lastly, leveraging on adolescent engagement in technology use is seen to be a good way to develop interventions that can track and enhance their health results. Table 2 provides a concise

summary of the key dimensions towards which improvements in adolescent health have been witnessed through AI-driven systems.

Table 2: Key Health Dimensions and Underlying AI Techniques Applied

AI Applications	Purpose/Function	Determining Factors	Techniques/Mechanics Applied
Detection of Mental Health Issues [12-16]	Suicide risk prediction, disruptive behaviors, depression, genetic predispositions, dementia	Data from EHR, neural, prenatal, developmental, physiologic, sociocultural, environmental, emotional and cognitive features	Sentiment analysis, ANN, tree-based learning with XGBoost, DNN, GWAS.
Remote Patient Monitoring [17-22]	glycemic control, monitor clinical trials, smart health monitoring, IoT integration for body vitals, reporting mild brain functioning disorder	Hemoglobin A1c, data from wearable devices, ECG, body heat, physical orientation, pulsations and pressure; data from Implantable IoT designs	Bluetooth-enabled glucometer, SVM, ANN, Deep learning, wireless transmission, mobile apps.
Personalized Nutrition and Physical Fitness [23-27]	Improving eating habits, instructional strategies for enhancing health, guiding food-intake for high risk diabetic and cardio patients, classifying degree of physical activity	Daily challenges, meal planning assistance, nutritional information, and gamified elements; weight, body fat percentage, and body mass index (BMI)	Generative AI models, logistic regression, support vector machines, random forest, and gradient boosting.
Substance Abuse Prevention [28-32]	Predicting cannabis use and alcohol problem index, Substance use disorder, peer influence on alcohol use, e-cigarette use, detect substance use from EHRs.	Age, early life stress, first-time tobacco and cannabis use, lifetime use of other substances; races, family backgrounds and accessibility; history of alcohol use; data from EHRs- clinical notes, diagnoses, and patient-reported information	Penalized multivariate regression and multivariate covariance, Chi-square Automatic Interaction Detection (CHAID) approach, extreme gradient boosting, NLP.

IV. CHALLENGES AND CONCERN IN IMPLEMENTING INTELLIGENCE IN HEALTHCARE

The rise of AI in the healthcare sector is driven by several enabling factors including vast healthcare data and beneficiaries becoming more proactive clients. Content analytics and deep learning models streamline processes, minimize errors, and pinpoint high-risk subjects for advance intervention, reducing medical costs and enabling institutions to handle more patients efficiently. However, there are challenges and barriers that must be addressed, before its reliable use and resilience can be determined. As with the implementation of any new health technology, gaining trust and acceptance from both healthcare professionals and patients is pivotal to the success of AI adoption [33]. Lack of confidence in fully automated systems is also an issue, particularly for the patients and their families, as the use of AI involves a certain degree of data sharing without the need for human intervention. In particular, for an AI-powered remote monitoring system (such as mobile health apps and wearable devices) to work well, the adolescent users must be willing to continuously use the system to collect and transmit their health data. Individuals may feel that their privacy has been intruded because such health data can be remotely accessed and viewed by their parents or healthcare professionals at any time.

Therefore, it is crucial for developers and researchers to find effective strategies to engage adolescents in the co-design and development of such systems. It is also tricky to ensure that the required data is being consistently and accurately recorded. Medication errors and misdiagnoses can have a detrimental effect on the well-being of children and young people. Hence, it is pointed out that the focus of AI should be to enable and support clinicians and careers, rather than replace them. This suggests an augmented intelligence approach, which can aid healthcare professionals [34] in making informed decisions, but the responsibility of the final say will not be taken away from mankind.

Similarly, the issues surrounding different electronic health record systems and a lack of interoperability present another major obstacle in the realization of digital healthcare that makes full use of AI [35]. Typically, healthcare is provided through a range of services and facilities that are disconnected from each other. For example, adolescents may receive care from pediatricians, family doctors, psychiatrists and specialist physicians, and they may visit different places such as general care OPDs, community clinics, and hospitals. The treatments and interventions that are offered are often based on the knowledge and expertise of the specific healthcare provider that the adolescent has visited. This can lead to variations in the quality of care and a lack of coordination in the management of adolescent health. For AI to be effectively implemented in this complex landscape, it needs to be able to interact with the different information systems and technologies that are used across subdomains. The input of data to these AI systems and how that data is processed further becomes a prime concern, in view of ethical and regulatory guidelines.

In terms of working with young patients, there is a difficulty in finding a balance between meaningful data assessment to inform diagnoses and not intruding into adolescent behavior, emotions, and experiences. The developmental differences in the pediatric population and our current inability to segment and stratify the data to capture the different ages and stages of

childhood pose a real problem [36]. That is to say, the creation of any AI algorithms in adolescent health appears to be stymied by a perceived disconnect between certain groups of people, the uniformity of the data, and the growing movement towards personalization of healthcare. These challenges are amplified when we consider not just adolescents, but a vast cohort of individuals.

V. CONCLUSION AND FUTURE DIRECTIONS

The integration of artificial intelligence in adolescent healthcare demonstrates transformative potential, meeting the unique, evolving needs of young people through enhanced accessibility, personalized interventions, and improved health outcomes. Applications such as mental health diagnostics, remote patient monitoring, tailored nutrition and fitness recommendations, and substance abuse prevention are contributing to more proactive, responsive healthcare for adolescents. These advancements support early detection, consistent monitoring, and timely intervention, ultimately promoting holistic well-being. Despite the significant progress, certain challenges remain; including issues related to data privacy, interoperability, ethical implications, and the need to foster trust and acceptance, especially as young people and their caregivers engage with AI-driven healthcare solutions.

Future development in this field must emphasize data privacy and ethical considerations. Building AI systems that uphold confidentiality and user consent while using advanced data-sharing techniques and anonymization can secure users' trust. Ethical frameworks that are specifically attuned to adolescent health contexts will help ensure AI's responsible implementation in healthcare. Additionally, as AI applications advance, they should aim to integrate with broader healthcare systems, enabling cohesive functionality across various health areas. Such integration can create a more unified approach, allowing AI-powered tools to address adolescents' mental, physical, and emotional needs in tandem and increasing healthcare efficacy overall.

AI tools must also be developed with accessibility in mind, catering to adolescents from diverse backgrounds, including underrepresented and disadvantaged groups. Engaging user experiences can be cultivated by incorporating interactive and user-friendly designs, gamified health education, and personalized resources that resonate with adolescent needs and promote proactive health management. Preventive care, a promising area for AI, should remain central to future AI development. By focusing on predictive models and early intervention strategies, AI can help address health risks before they become critical issues, empowering adolescents to adopt healthy behaviors and build resilience. Interdisciplinary collaboration across fields like psychology, medicine, and data science will further refine these tools, ensuring they address the complexities of adolescent health from multiple perspectives. As AI continues to advance, a proactive and cooperative approach will be essential to harness its full potential, turning these innovations into trusted tools that meaningfully improve adolescent health outcomes.

REFERENCES

- [1] World Health Organization, WHO Study Group on young people and health for all by the year 2000. *Geneva: WHO Technical Report*, 1984.
- [2] J. A. Cohen, K. J. Kelleher and A. P. Mannarino, "Identifying, treating, and referring traumatized children: the role of pediatric providers," *Archives of pediatrics & adolescent medicine*, vol. 162, no.5, pp. 447-452, 2008.
- [3] I. Seiffge-Krenke, "Adolescents' health: A developmental perspective," *Psychology Press*, 2019.
- [4] L. Sequeira et al. "Mobile and wearable technology for monitoring depressive symptoms in children and adolescents: A scoping review," *Journal of affective disorders*, vol. 265, pp. 314-324, 2020.
- [5] W. Zhang et al., "Promoting child and adolescent health through wearable technology: A systematic review," *Digital Health*, vol. 10, 2024.
- [6] D. Elkind, "Understanding the young adolescent," *The life cycle: Readings in human development*, Columbia University Press, pp. 167-176, 1981.
- [7] E. A. Crone and R. E. Dahl, "Understanding adolescence as a period of social-affective engagement and goal flexibility," *Nature reviews neuroscience*, vol. 13, no. 9, pp. 636-650, 2012.
- [8] J. C. Coleman, "Understanding adolescence today: A review," *Children & society*, vol. 7, no.2, pp. 137-147, 1993.
- [9] J. P. Allen, C. M. Moore and G. P. Kuperminc, "Developmental approaches to understanding adolescent deviance," *Cambridge University Press*, 1997.
- [10] L. Steinberg, and A. S. Morris, "Adolescent development," *Annual review of psychology*, vol. 52, no.1, pp. 83-110, 2001.
- [11] R. Jessor, "Problem behavior theory: A half-century of research on adolescent behavior and development," 2014.
- [12] C. Su et al., "Machine learning for suicide risk prediction in children and adolescents with electronic health records," *Translational psychiatry*, vol. 10, no. 1, p. 413, 2020.
- [13] N. de Lacy et al., "Predicting individual cases of major adolescent psychiatric conditions with artificial intelligence," *Translational psychiatry*, vol. 13, no. 1, p. 314, 2023.

[14] M. R. Islam et al., "Depression detection from social network data using machine learning techniques," *Health information science and systems*, vol. 6, pp. 1-12, 2018.

[15] A. Khan, Q. Liu and K. Wang, "iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes," *BMC bioinformatics*, vol. 19, pp. 95-107, 2018.

[16] L.Y. Lee et al., "Robust and interpretable AI-guided marker for early dementia prediction in real-world clinical settings," *EClinicalMedicine*, vol. 74, 2024.

[17] I. Sachmechi, S. Salam, M. Amini, R. Khan, A. Spitznogle and T. Belen, "Frequent monitoring of blood glucose levels via a remote patient monitoring system helps improve glycemic control," *Endocrine Practice*, vol. 29, no. 6, pp. 441-447, 2023.

[18] T. N. Abiodun, D. Okunbor, and V. C. Osamor, "Remote health monitoring in clinical trial using machine learning techniques: a conceptual framework," *Health and Technology*, vol. 12, no. 2, pp. 359-364, 2022.

[19] K. G. Sheela, and A. R. Varghese, "Machine learning based health monitoring system," *Materials Today: Proceedings*, vol. 24, pp. 1788-1794, 2020.

[20] G. P. Ramalingam, D. Pandian and C. F. S. Batcha, "IntelliCare: Integrating IoT and Machine Learning for Remote Patient Monitoring in Healthcare: A Comprehensive Framework," *Journal of Cognitive Human-Computer Interaction (JCHCI)*, Vol. 7, no. 2, pp. 50-59, 2024.

[21] S. Ren et al., "Response rate patterns in adolescents with concussion using mobile health and remote patient monitoring: observational study," *JMIR pediatrics and parenting*, 7, 2024.

[22] L. Thornton et al., "A multiple health behavior change, self-monitoring mobile app for adolescents: development and usability study of the Health4Life app," *JMIR formative research*, vol. 5, no. 4, 2021.

[23] A. Rohde et al., "An app to improve eating habits of adolescents and young adults (challenge to go): systematic development of a theory-based and target group-adapted mobile app intervention," *JMIR mHealth and uHealth*, vol. 7, no. 8, 2019.

[24] J. Bešlić, A. Bešlić, A. Haverić and M. Gajević, "Leveraging AI in the Classroom to Transform Adolescent Dietary Habits Through Innovative Nutritional Education," *SN Computer Science*, vol. 5, no. 6, p. 757, 2014.

[25] A. Dinh, S. Miertschin, A. Young, and S. D. Mohanty, "A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC medical informatics and decision making," vol. 19, no. 1, pp. 1-15, 2019.

[26] S. Alian, J. Li and V. Pandey, "A personalized recommendation system to support diabetes self-management for American Indians," *IEEE Access*, vol. 6, pp. 73041-73051, 2018.

[27] M. Ahmadi et al., "Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy," *Journal of neuroengineering and rehabilitation*, vol. 15, pp. 1-9, 2018.

[28] T. L. M. Ruberu et al., "Joint risk prediction for hazardous use of alcohol, cannabis, and tobacco among adolescents: A preliminary study using statistical and machine learning," *Preventive Medicine Reports*, vol. 25, 2022.

[29] S. Hong, B. Walton, H. W. Kim and A. D. Lipsey, "Improving treatment completion for young adults with substance use disorder: Machine learning-based prediction algorithms," *Journal of Psychiatric Research*, vol. 178, pp. 41-49, 2024.

[30] A. Amialchuk, O. Sapci and J. D. Elhai, "Applying machine learning methods to model social interactions in alcohol consumption among adolescents," *Addiction Research & Theory*, vol. 29, no. 5, pp. 436-443, 2021.

[31] A. L. Vázquez et al., "An ecological examination of early adolescent e-cigarette use: A machine learning approach to understanding a health epidemic," *Plos one*, vol. 19, no. 2, 2024.

[32] Y. Ni, A. Bachtel, K. Nause and S. Beal, "Automated detection of substance use information from electronic health records for a pediatric population," *Journal of the American Medical Informatics Association*, vol. 28, no. 10, pp. 2116-2127, 2021.

[33] B. Wies, C. Landers and M. Ienca, "Digital mental health for young people: a scoping review of ethical promises and challenge," *Front Digit Health*, 2021.

[34] F. Magrabi et al., "Artificial intelligence in clinical decision support: challenges for evaluating AI and practical implications," *Yearbook of medical informatics*, vol. 28, no. 1, pp. 128-134, 2019.

[35] L. Messeri and M. J. Crockett, "Artificial intelligence and illusions of understanding in scientific research," *Nature*, vol. 627, no. 8002, pp. 49-58, 2024.

[36] O. N. Saracho, "Theories of child development and their impact on early childhood education and care," *Early Childhood Education Journal*, vol. 51, no. 1, pp. 15-30, 2023.