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Abstract: 

This study introduces an Explainable AI (XAI) framework specifically developed for web and text 

mining applications, addressing the critical challenges of transparency and understandiblity in AI 

systems. While advanced Artificial Intelligence models, particularly deep learning architectures, excel 

in predictive capabilities, their "black-box" nature often hinders trust, accountability, and regulatory 

compliance. The proposed framework bridges this gap by integrating interpretable models with post-

hoc clarification methods such as Local Interpretable Modell-agonistic Explanation (LIME) and 

SHapley Additive exPlanations (SHAP). It also incorporates interactive visualization tools to 

elucidate outputs like sentiment analysis, topic modeling, and keyword significance, empowering 

stakeholders to validate and refine AI-driven insights effectively. Through case studies in domains 

such as healthcare, e-commerce, and legal services, the framework demonstrates its adaptability and 

practical utility in enhancing user trust and promoting ethical AI practices. Experimental results 

reveal its ability to balance interpretability with performance, ensuring usability across diverse 

applications while addressing challenges like scalability and domain-specific explanations. This 

research advances the field of XAI by providing a structured, transparent, and adaptable solution for 

web and text mining tasks. Future work will focus on optimizing scalability, tailoring explanations for 

specific industries, and integrating ethical considerations such as bias mitigation to ensure the 

responsible deployment of AI systems. 

 

Keywords: Explainable AI, Interpretability, LIME, Post-hoc Explanations, SHAP, Text Mining, 

Transparency 
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I. INTRODUCTION 

Artificial Intelligence (AI) has drastically changed the approach to data analysis in organizations, with web and text mining 
becoming essential subfields. These areas utilize advanced machine learning algorithms to help industries such as marketing, 
healthcare, and e-commerce identify patterns, predict trends, and produce actionable insights from unstructured data sources. 
However, a major challenge lies in the lack of interpretability of many AI Models, specially those rely on deep learning 
architectures. This Problem, often referred to as the "black-box" phenomenon, raises significant concerns regarding the trust, 
transparency, and ethical implementation of AI systems ([1], [2]). 

Explainable Artificial Intelligence (XAI) marks the pressing need for interpretability in Artificial Intelligence systems by 
introducing frameworks and techniques that enhance their transparency. In the context of web and text mining, XAI provides 
clarity on how specific features, such as keywords, phrases, and patterns, contribute to outcomes like classifications, sentiment 
evaluations, and topic modeling. Methods Like LIME[1] and SHAP[2]  help make models easier to understand especially 
when looking at certain examples widely recognized for their ability to generate detailed insights into AI predictions. These 
methodologies play a pivotal role in building trust among stakeholders with limited technical expertise, while also supporting 
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compliance with regulatory standards such as Data protection regulation (GDPR) and the California consumer privacy act 
(CCPA) [3], [4]. 

The complexity of AI models poses another challenge: balancing interpretability with performance. Interpretable models, 
such as logistic regression, often sacrifice predictive power compared to deep learning models [5]. Recent advancements, such 
as Grad-CAM for visual explanations [6], and domain-specific methods for text mining, have made strides in bridging this gap, 
but more work is needed to ensure practical usability and scalability for real-world applications. 

This paper proposes an XAI framework tailored to web and text mining, addressing the need for transparency and usability 
across industries. The framework combines interpretable models and post-hoc explanation methods with an interactive 
dashboard to visualize key insights, such as keyword importance, sentiment breakdowns, and topic clusters. By offering a user-
friendly interface, this approach empowers both technical and non-technical stakeholders to explore, validate, and refine AI-
driven insights [7], [8]. 

Furthermore, this research includes real-world case studies in healthcare, e-commerce, and legal domains to demonstrate the 
framework's practical applications. By addressing challenges such as scalability and domain-specific explanations, this work 
contributes to the growing field of XAI, offering a roadmap for ethical and transparent AI in web and text mining. 

 

II. LITERATURE SURVEY 

The domain of Explainable Artificial Intelligence (XAI) has gained noteworthy attention in recent years, with substantial 
progress made in the development of techniques and tools for interpreting AI models. This section provides a brief overview of 
key contributions to XAI, particularly in the context of web and text mining. 

One of the foundational works in XAI (Explainable AI) is the development of Local Interpretable Model -agnostic 
Explanations (LIME), which gives local explanations by disturbing input data and notice changes in predictions [9]. Similarly, 
SHapley Additive exPlanations (SHAP) builds upon game theory principles to assign attribution values to input features, 
offering global and local explanations [2]. These methods have become standard tools for post-hoc explainability across 
various domains. 

In the context of text mining, attention-based models such as Transformers have introduced methods for interpretability 
through visualization of attention weights. For instance, Grad-CAM has been adapted to highlight significant words or phrases 
contributing to model predictions in sentiment analysis and classification tasks [11]. Another important advancement is the use 
of sparse embeddings, which improve interpretability by representing data in low-dimensional, human-readable formats [12]. 

Several studies have focused on integrating interpretability into the design of models themselves. For example, 
interpretable neural networks have been proposed to enhance transparency without significantly compromising performance 
[13]. Domain-specific approaches, such as justifications for topic modeling and phrase-level sentiment analysis, have also 
shown promise in tailoring explainability to end-user needs [14]. 

Although substantial advancements have been made, difficulties remain in effectively applying explainability methods to 
large datasets and making them accessible to non-technical audiences. Contemporary research underscores the value of 
interactive dashboards and visual tools in bridging the gap between complex technical results and user interpretation [15]. 
Moreover, provenance tracking has become a vital strategy for monitoring data transformations and their effects on model 
predictions [16]. 

This survey highlights that while considerable progress has been made, there is a growing need for frameworks that unify 
interpretability techniques with practical applications in web and text mining. By addressing these gaps, the proposed 
framework aims to contribute to the next generation of XAI systems. 

 

III. PROPOSED METHODOLOGY 

The suggested methodology is focused on designing an Explainable AI (XAI) framework specifically suited for web and text 

mining applications. This framework integrates interpretable models, post-hoc explanation methods, and user-focused 

visualization tools to enhance transparency and usability. The subsequent subsections detail the core components of the 

methodology. 

A. Integration of Explainable Models 

The framework combines interpretable models, like Logistic Regression, with complex models like Transformers or 
Bidirectional Encoder Representations from Transformers (BERT). This hybrid approach ensures both high accuracy and 
interpretability, enabling users to validate insights derived by complex models using simpler, more explainable counterparts 
[17]. 

Post-hoc explanation methods, such as LIME (Local Interpretable Model-agnostic Explanations) [18] and SHAP (SHapley 
Additive exPlanations) [2], are applied to complex models to provide local explanations for individual predictions. These 
methods help identify influential features in tasks such as sentiment analysis, topic modeling, and classification. 
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B. Interactive Explanation Interface 

To facilitate usability for non-technical stakeholders, an interactive dashboard is developed. This dashboard supports: 

 Keyword Importance Visualization: Displays the importance of specific keywords in classification tasks, enabling 
users to understand the model's rationale. 

 Topic Modeling Justification: Visualizes clusters and highlights how specific words contribute to topic formation 
[20]. 

 Sentiment Analysis Breakdown: Provides a granular view of sentiment classification, showcasing contributions of 
individual words or phrases to overall predictions. 

The dashboard also allows users to tweak input data and observe real-time changes in predictions, enhancing user 
engagement and understanding [21]. 

 

C. Tailored Explanation Techniques for NLP Tasks 

Customized tools are designed to provide explainability for certain Natural Language Processing (NLP) tasks: 

 Sentiment Analysis: Highlights key phrases that influence sentiment categorization, leveraging attention 
mechanisms to explain predictions [22]. 

 Topic Modeling: Displays word-to-topic relationships using word clouds or similar visual aids to make topic 
distributions more interpretable [23]. 

 Text Classification: Employs heatmaps to visualize attention weights or feature importance, helping users 
understand how specific words or phrases drive classification outcomes [24]. 

 

D. Transparency through Data Provenance 

Provenance tracking is incorporated to trace how data transformations (e.g., preprocessing steps like tokenization or stemming) 
influence model predictions. This approach not only increase trust but also aligns with regulatory requirements for data 
transparency [25]. 

Additionally, explainable embeddings, such as sparse embeddings, are used to enhance the interpretability of input 
representations while maintaining computational efficiency [26]. 

 

E. Real-World Case Studies 

To confirm the suggested framework, it is applied to real-world scenarios in various domains: 

 Healthcare: Mining medical literature to identify disease correlations with justifiable explanations for insights 
[27]. 

 E-Commerce: Analyzing customer sentiment in product reviews with interpretable breakdowns for decision-
making [28]. 

 Legal: Enhancing transparency in legal document analysis by visualizing keyword importance and reasoning for 
classifications [29]. 

F. Scalability Considerations 

The framework is optimized for scalability by leveraging distributed systems and efficient algorithms to handle large web 
and text datasets in real time [30]. Techniques such as dimensionality reduction and model compression are applied to maintain 
performance without compromising explainability. 

 

G. Workflow and Proposed Design 

Workflow: 

1. Data Collection: Gather web and text data from various sources, including medical, e-commerce, and legal domains. 

2. Preprocessing: Apply preprocessing steps such as tokenization, stemming, and data transformation for cleaner input. 

3. Model Selection: Integrate interpretable models (e.g., Logistic Regression) and complex models (e.g., BERT) for 
hybrid prediction. 

4. Post-hoc Explanations: Use LIME and SHAP methods to provide insights into individual predictions. 
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5. Interactive Visualization: Develop dashboards for real-time explanation and analysis of predictions. 

6. Case Study Validation: Apply the framework to real-world scenarios to test accuracy, interpretability, and usability. 

7. Scalability Enhancements: Utilize distributed systems and dimensionality reduction techniques to handle large-scale 
datasets efficiently. 

 

Figure 1: Workflow of Explainable AI Framework 

 

H. Uniqueness of the Proposed Design 

 Hybrid Model Approach: Combines interpretable and complex models, ensuring both high performance and 
explainability. 

 User-Centric Visualization: Interactive dashboards provide real-time insights, catering to non-technical 
stakeholders. 

 Tailored NLP Tools: Offers specialized explainability techniques for NLP tasks like sentiment analysis, topic 
modeling, and text classification. 

 Data Provenance and Efficiency: Integrates provenance tracking and sparse embeddings to enhance transparency 
and computational efficiency, meeting regulatory requirements and maintaining performance. 

 

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION 

In this part, we explain the experimental setup and integration of the Explainable AI (XAI) framework tailored for web and 

text mining tasks. The goal is to assess the proposed methodology by evaluating its performance on various datasets and 

using appropriate explainability techniques. This section outlines the datasets, model configurations, tools, and evaluation 

metrics employed to validate the framework. 

 

A. Dataset Description 

For the evaluation of the proposed XAI framework, three distinct datasets representing various web and text mining tasks are 

used. These sets of data cover fields such as healthcare, e-commerce, and legal documents, providing a diverse range of text-

based tasks. 

 

Healthcare Dataset: This dataset consists of medical literature, research papers, and clinical notes, which are used for 

mining disease correlations and understanding medical trends. It contains text data labeled with disease names, symptoms, 

and treatments [31]. 
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E-Commerce Dataset: A set of product reviews and ratings collected from an online retail platform, which is used for 

sentiment analysis and customer opinion mining. Each review is labeled with sentiment categories (positive, neutral, 

negative), and product information is provided for each review [32]. 

 

Legal Dataset: A collection of legal documents such as court rulings, case summaries, and legal opinions. This dataset is 

used for text classification tasks where documents are categorized by type (e.g., case law, legal advice, legal precedents) [33]. 

Before using these datasets, preprocessing steps like tokenization, stemming, and stop-word removal are applied to ensure 

clean and standardized text data. Features are then extracted using methods such as TF-IDF or word embeddings(Word2Vec 

or GloVe). 

 

B. Basis for Model Selection 

The selection of models in the XAI framework is based on balancing performance and interpretability. Complex models (e.g., 

BERT, LSTM) are chosen for their high predictive accuracy and ability to capture complex patterns in text data. Interpretable 

models (e.g., Logistic Regression, Decision Trees) are chosen for their ease of understanding, allowing users to easily 

interpret the model’s decisions, which is a key component of the Explainable AI framework. 

 

Complex Models: These models are selected when the dataset size is large and task complexity is high, requiring high 

predictive accuracy: 

 BERT (Bidirectional Encoder Representations from Transformers): A state-of-the-art language model pre-

trained on large text corpora and fine-tuned for text classification, sentiment analysis, and topic modeling [31]. 

 LSTM (Long Short-Term Memory): A type of recurrent neural network (RNN) used to model sequential 

dependencies in text data. It is applied for sentiment analysis and sequence-based tasks in text mining. 

 

Interpretable Models: These models are selected for their simplicity and ease of interpretation, ensuring that users can 

understand how decisions are made: 

 

 Logistic Regression: A classical linear model commonly utilized as a benchmark for comparison due to its 

computational efficiency and straightforward interpretability regarding feature significance [32]. 

 Decision Trees: A straightforward and interpretable classification model often used to evaluate performance in 

relation to more advanced models, highlighting the balance between interpretability and predictive accuracy. 

 

Both the complex models (BERT, LSTM) and interpretable models (Logistic Regression, Decision Trees) are enhanced with 

interpretablity methods such as LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive 

exPlanations) to generate feature importance scores, attention maps, and local explanation [33]. 

 

 
Figure 2: Model Performance Comparison on Different Datasets 
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C. Tools and Libraries Used 

The implementation of the XAI framework utilizes several well-known Python libraries and frameworks to facilitate model 

training, evaluation, and explainability: 

 Python: The primary programming language for implementing machine learning models and processing data. 

 TensorFlow and PyTorch: Deep learning frameworks used for fine-tuning complex models such as BERT and 

LSTM. These frameworks enable efficient model training and handling of large datasets [34]. 

 Scikit-learn: A popular library for building interpretable models like Logistic Regression and Decision Trees, and 

for performing model evaluation [35]. 

 LIME and SHAP: Libraries used for generating explainable outputs from black-box models. LIME provides local 

model explanations, while SHAP offers game-theoretic explanations for individual predictions [33], [36]. 

 Matplotlib, Seaborn, Plotly: Visualization libraries for generating plots and dashboards. These tools are employed 

for creating interactive visualizations and providing stats of the model’s decision-making process [34]. 

 Flask: A lightweight web framework used to deploy the interactive dashboard, allowing users to visualize and 

interact with model predictions and explanations. [40] discusses the deployment of a deep learning model using 

Python Flask within a cloud-based infrastructure, providing insights into integrating Flask for machine learning 

applications. 

 

These libraries and tools are integrated into a cohesive framework, enabling end-to-end implementation of the XAI system. 

 

D. Evaluation Metrics 

The evaluation of the XAI framework is conducted using two primary categories of metrics: model performance and 

explainability effectiveness. 

 

Model Performance Metrics: 

 Accuracy: Evaluate the overall accuracy of the model by analysing the part of accurate predictions across every 

category. 

 F1-Score: A comprehensive metric that balances precision and recall, making it particularly suitable for scenarios 

involving polarity in datasets. 

 Precision and Recall: Precision quantifies the proportion of true positive predictions among all positive predictions, 

while recall measures the model’s effectiveness in identifying all true positive instances. 

 

Explainability Effectiveness Metrics: 

 Interpretability Score: Collected from user surveys, this score measures how understandable and clear the model’s 

explanations are to non-technical stakeholders. This score is obtained through a Likert scale (1-5), with higher score 

showing better interpretability [37]. 

 User Satisfaction: A subjective measure of how confident users are in the model’s predictions after viewing the 

explanations. User satisfaction is assessed using survey responses [38]. 

 Cohesion of Explanation: This metric evaluates whether the explanations align with domain knowledge and 

provide logical consistency in the model’s outputs. It is measured through user feedback and expert validation [2]. 

 

E. Experimental Workflow 

The workflow for implementing and testing the XAI framework is structured as follows: 

 

1. Data Preprocessing: 

 Clean and preprocess the datasets (e.g., tokenization, stop-word removal, etc.). 

 Extract relevant features from text data using TF-IDF or pre-trained embeddings. 

 

2. Model Training and Fine-tuning: 

 Fine-tune the complex models (BERT and LSTM) for each task, using datasets specific to healthcare, e-commerce, 

and legal domains. 

 Train interpretable models (Logistic Regression, Decision Trees) for each task to establish a baseline. 

 

3. Explainability Generation: 

 Apply LIME and SHAP to produce explanations for the prediction made by complex models. 

 Visualize feature importance, decision-making patterns, and attention scores. 
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4. Dashboard Integration: 

 Develop an interactive web-based dashboard using Flask, allowing users to explore model predictions and modify 

inputs in real-time. 

 Display explanations in an easily interpretable format, with options for visualizations such as heatmaps, word 

clouds, and bar charts. 

 

5. Evaluation: 

 Measure model performance using the defined metrics (accuracy, F1-score, etc.). 

 Gather user feedback on the explainability and usability of the dashboard and interpretability of the generated 

explanations. 

 

V. RESULTS AND DISCUSSION 

This section presents a comprehensive analysis of experimental results to assess the performance and efficacy of the 
proposed Explainable AI (XAI) framework in web and text mining tasks. The evaluation includes a detailed examination of 
outcomes across various models, an assessment of the impact of explainability techniques, and empirical evidence from case 
studies to substantiate the practical applicability of the framework. 

A. Model Performance Comparison 

The performance of various AI models was examined using metrics such as accuracy, precision, recall, F1-score, and 
interpretability score. These evaluations highlight the trade-off between model complexity and interpretability. 

Accuracy Computation: Accuracy is calculated using the formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100 

 

Where: 

 Number of Correct Predictions is the number of instances where the model correctly predicts the outcome. 

 Total Number of Predictions is the total number of instances evaluated. 

 

Accuracy and Performance Metrics 

The models were tested on three datasets representing healthcare, e-commerce, and legal domains: 

Model Domain Accuracy (%) Precision (%) Recall (%) 

BERT Healthcare 92 90 91 

 E-commerce 89 88 87 

 Legal 88 86 85 

LSTM Healthcare 89 87 88 

 E-commerce 86 85 84 

 Legal 85 83 82 

Logistic 

Regression 
Healthcare 81 79 80 

 E-commerce 79 77 76 

 Legal 80 78 77 

Decision Tree Healthcare 80 78 77 

 E-commerce 77 75 74 

 Legal 78 76 75 

 

Table 1: Accuracy and Performance Metrics 

Key Insights 

 BERT achieved the highest accuracy but required post-hoc explanation methods (LIME, SHAP) to address its 
interpretability challenges. 
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 Logistic Regression and Decision Trees were highly interpretable, making them preferable for applications 
where user trust and explanation clarity are critical. 

 The balance between interpretability and performance depends on domain-specific requirements and user 
preferences. 

 

Figure 3: Performance Comparison Graph. 

 

B. Explainability Evaluation 

Explainability methods, including LIME and SHAP, were employed to make complex models interpretable. 

LIME Explanations 

LIME was used to generate local explanations for individual predictions. For instance: 

 In sentiment analysis, LIME highlighted critical phrases influencing positive or negative sentiments, such as 
“fast shipping” and “poor quality” in e-commerce reviews. 

SHAP Explanations 

SHAP values provided both local and global feature attributions, helping users understand: 

 Healthcare Dataset: Keywords like “fever” and “shortness of breath” had the highest contributions to disease 
prediction. 

 E-commerce Dataset: Features such as “discount” and “customer support” were key in predicting customer 
sentiment. 
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Figure 4: SHAP Feature Importance Visualization. 

User Feedback 

Users rated the interpretability of models using a Likert scale (1-5). Feedback revealed that: 

 SHAP explanations were preferred due to their detailed visualizations (e.g., bar charts, heatmaps). 

 Non-technical users found the interactive dashboard with SHAP visualizations more engaging and informative. 

 

Explainability 

Metric 
Score (1-5) 

LIME 

Interpretability 
4.2 

SHAP 

Interpretability 
4.7 

Dashboard Usability 4.5 

 

Table 2: Users Feedback 

C. Case Study Results 

Healthcare Case Study 

Task: Predict disease correlations using medical literature. 

Results: 

 Logistic Regression identified key terms with 81% accuracy. 

 SHAP visualizations provided clear attributions for symptoms like “high fever” and “persistent cough.” 

 Users reported a 30% increase in trust when SHAP explanations were included. 

 

E-commerce Case Study 

Task: Analyze sentiment in product reviews. 

Results: 

 BERT achieved 89% accuracy in sentiment classification. 

 Explanations revealed that phrases like “durable” and “too expensive” heavily influenced predictions. 

 Businesses reported improved customer engagement after using the model’s insights. 
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Figure 5: Sentiment Analysis Results. 

Legal Case Study 

Task: Classify legal documents by type (e.g., case law, legal precedent) 

Results: 

 Decision Trees provided clear decision paths with 78% accuracy. 

 SHAP demonstrated why terms like “litigant” and “court ruling” were critical for classification. 

 Legal professionals found explanations improved efficiency by 25%. 

 

 

Figure 6: Keyword Importance for Topic Modeling. 
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D. Impact of Explainability on Trust and Adoption 

User Trust 

 Stakeholders across all domains expressed higher trust in AI systems with transparent explanations. 

 Healthcare professionals reported greater confidence in AI recommendations when explanations aligned with 

clinical knowledge. 

Adoption Rates 

 E-commerce businesses adopted the XAI framework for targeted marketing, citing a 20% boost in customer 

satisfaction. 

 Legal firms showed increased reliance on AI tools for document analysis, saving significant time. 
 

E. Challenges and Limitations 

Scalability Issues 

 Generating SHAP explanations for large datasets was computationally expensive. 

 Optimization techniques, such as distributed computing, are required to handle scalability. 
 

Domain-Specific Explanations 

 Customizing explanations for diverse domains remains a challenge. 

 Future work should explore automated domain adaptation techniques. 
 

VI. FUTURE WORK 

Future work for the Explainable AI (XAI) framework should focus on enhancing scalability, domain-specific 
customization, and real-time applicability. Efforts should be directed towards optimizing explanation techniques like LIME 
and SHAP for large datasets using distributed computing and model pruning. Additionally, developing domain-specific 
frameworks tailored to sectors such as healthcare, legal, and e-commerce will ensure explanations meet the unique needs of 
each field. Moreover, integrating multimodal data, such as images and text, will provide more comprehensive insights. Real-
time explainability for dynamic web applications is crucial, especially for applications requiring immediate feedback like social 
media sentiment analysis. Lastly, establishing standardized metrics for evaluating explainability will promote transparency, 
trust, and ethical AI practices across industries. 

 

VII. CONCLUSION 

This research presents an Explainable AI (XAI) framework specifically designed for web and text mining applications, 
addressing the critical requirement for transparency and interpretability in AI-driven decision-making systems. As AI models, 
particularly deep learning models, become more intricate, they often operate as black-box systems, making it difficult for users 
to comprehend and trust their outputs. The proposed framework bridges this gap by integrating illustrable models with most 
complex ones, while also incorporating post-hoc interpretable  techniques like LIME and SHAP. Our approach includes 
interactive visualization tools and tailored explanation methods for tasks such as sentiment analysis, topic modeling, and text 
classification, providing users with clear insights into the model's decision-making process. The framework is adaptable to 
different industries, including healthcare, e-commerce, and legal sectors, each with unique requirements for explanation depth 
and clarity. Through a series of experiments and case studies, we demonstrate the framework's effectiveness in improving 
model interpretability and enhancing user trust. Feedback from users in sectors like healthcare and legal decision-making, 
where the stakes are high, confirmed that the explanations were both meaningful and valuable. Nonetheless, challenges such as 
scalability, real-time explainability, and domain-specific customization remain, which require further investigation. This work 
contributes to the domain of XAI by giving a practical, adaptable framework for various AI tasks, particularly in web and text 
mining. It underscores the importance of balancing model accuracy with interpretability to ensure the effectiveness of AI 
systems in real-world applications. Future research should focus on enhancing scalability, tailoring explanations for specific 
domains, integrating multimodal data, and addressing ethical issues like bias mitigation. Continued refinement of this 
framework aims to promote the adoption of Artificial Intelligence systems that are not only precise but also transparent, ethical, 
and aligned with user needs. 

In conclusion, the suggested XAI framework possesses considerable possible to enhance the transparency and 
interpretability of AI systems, hence promoting more trust and broader adoption across various industries. As AI increasingly 
influences decision-making processes, guaranteeing that these systems are interpretable and accountable is important for their 
responsible deployment and long-term success. 
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