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Abstract: 

Malicious apps targeting the Android OS have grown significantly due to their popularity. To stay 

ahead of malware creators, malware detection systems need to be evaluated against detection evading 

techniques. Malware authors now frequently use obfuscation and other stealth techniques, to construct 

malicious applications that can avoid being detected by malware detection systems. When confronted 

with the same malware samples that have been obfuscated, a highly successful detection system for 

identifying unobfuscated malware samples might lose its efficiency. Thus, it becomes important to 

analyze the malware detection systems against obfuscation and other stealth techniques. In this paper, 

we evaluate CENDroid – an Android malware detection system that uses static analysis and combines 

clustering and ensemble methods to develop a classifier, against various techniques of evading 

malware at the feature-level as well as classifier-level. Experimental results show that the features 

used in CENDroid - API tags and permissions, displayed strong robustness against code obfuscation 

and app hiding techniques. A comparison of obfuscation resilience of API tags and permissions 

features with code graphs and Androguard is also presented. At the classifier-level, CENDroid could 

detect all the malware in four test sets created by using obfuscation and app hiding techniques. Thus, 

CENDroid, being syntax-based, is immune to semantic-level changes that preserve the syntax of the 

app. This study can also be used as a framework to evaluate any Android malware detection system 

against obfuscation and stealth techniques, gaining insights into its strengths and weaknesses and 

informing potential improvements to enhance its effectiveness. 

Keywords: Obfuscation Resilience, Android Malware Detection, API Tags, Permissions, Static 

Analysis. 
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I. INTRODUCTION 

Android is not only the most popular mobile OS but also leads in the market share of all the operating systems worldwide. 

According to StatCounter [1], nearly 40% of the operating system market share belongs to Android followed by Windows 

and then iOS, etc. in the period from Jan 2021 to Jan 2022. Due to its popularity, it has also become an attractive target 

for malware authors to explore. Detecting these malwares on time is of utmost importance as they spread like wildfire. 

Recently Kaspersky [2] researchers discovered a malware named “Fleckpe” on the official Google Play Store that has 

infected over 620,000 Android devices. Malware creators always look for vulnerabilities in the new techniques developed 

so that they can create novel malware that can evade the detection techniques developed. Thus, it becomes important to 

evaluate the malware detection systems against the techniques that try to evade detection to present a complete picture of 

their capability to detect malware. Various Android malware detection systems have been proposed in the past that can 

detect malware with high accuracy [3]–[7]. In the literature, we can find various studies that evaluate Android malware 

detection systems against various techniques such as code obfuscation, steganography, cryptography, etc.[4], [8], [9].  
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Code obfuscation techniques make the code difficult to understand, and thus used to protect intellectual property but it is 

also used by malware creators to avoid detection as detection systems usually check for similarity patterns [10]. 

 
 Most malware developers use various code obfuscations to conceal the harmful code inside the original Android apps 

to avoid detection [11]. To find malware, the majority of anti-malware tools rely on signature-based techniques [11]. Using 
various obfuscation methods, a signature can be easily evaded [12], [13]. Thus, testing Android malware detection systems 
against code obfuscations becomes an essential evaluation step to prove robust resilience against obfuscated malwares. In 
the literature, we found that many Android malware detection systems developed have not been evaluated against code 
obfuscations [14]–[16]. Merely reporting performance metrics on datasets of malicious and benign Android apps does not 
provide a complete analysis of the detection system that might fail to detect the obfuscated versions of malwares. In this 
paper, we extend and evaluate the existing Android malware detection system – CENDroid [3] – a Cluster-ENsemble 
classifier for detecting malicious Android apps, against code obfuscation and app hiding techniques. CENDroid is a static 
Android malware detection system that uses permissions and API (Application Programming Interface) tags as features 
along with cluster-ensemble classifier (k-mode clustering combined with ensemble learning – majority vote, weighted 
majority vote, and stacking) to detect whether an Android app is malicious or benign with high accuracy. For creating 
obfuscated malware, three tools namely ADAM [17], AAMO [11], and DroidChameleon [12] have been used and for 
creating malwares using app hiding techniques we have used the methods as described in [13]. The resilience of CENDroid 
against obfuscated malware has been performed at the feature-level as well as at the classifier-level to provide insights 
about how resilient the features and the classification algorithm used in CENDroid, are against code obfuscations. 

 

The main contributions of our study are as follows: 

• Analyzing the resilience of CENDroid against obfuscation and app hiding techniques at the feature-level as well as 
at the classifier-level. At the feature-level, the resilience of features extracted in CENDroid (API tags and 
permissions) is evaluated against various obfuscation and app hiding techniques. The methodology used in this study 
for feature-level analysis is based on the approach presented in [8]. At the classifier-level, we train CENDroid using 
a training set that comprises various benign and malicious Android apps and then observe their prediction accuracy 
on a special test set comprising obfuscated and hidden malware apps. 

• A comparison of API tags and permissions feature sets with the feature-level analysis of code graphs and Androguard 
[8] is also presented.  

The novelty of this work lies in presenting a framework comprising of feature-level as well as classifier-level analysis 
for evaluating malware detection systems. This study can also be used as a framework to evaluate any Android malware 
detection system against obfuscation and stealth techniques, gaining insights into its strengths and weaknesses and 
informing potential improvements to enhance its effectiveness. 

The remainder of this paper is organized as follows. Related work and preliminaries are presented in Sect.II. In Sect.III, 
we present our methodology of feature- and classifier-level evaluation of CENDroid. The experimental results are presented 
in Sect. IV along with a discussion. Finally, we conclude in Sect.V. 

 

 

II. RELATED WORK AND PRELIMINARIES 

In this section, we describe works that are closely related to ours, including the code obfuscation tools and app hiding 
techniques used in our study. 

Android malware detection systems developed are based on static, dynamic, or hybrid approaches. The static approach 
involves extracting features from Android apps by analyzing the code of the app and the dynamic approach involves 
extracting features by executing the Android apps in an isolated environment. The static approach has the advantage of over 
dynamic analysis as the overhead of executing every app for extracting features can be computationally more expensive. 
However static analysis is unable to detect malware that has no trace of malware in the code of the app but performs malicious 
activity during runtime. The hybrid approach involves both – static as well as dynamic, thus coupling the advantages of static 
and dynamic approaches. 
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In [18], Control-Flow Graphs (CFG) are constructed for Android apps to obtain API datasets, and then ensemble learning 

is performed for Android malware detection. In [19], code graphs are extracted from Android apps and then machine learning 
is applied for classifying Android apps as benign or malicious. Code graphs are high-level control-flow graphs that contain 
package-level information in the nodes of the graphs. RevealDroid [9] extracts static features such as usage of APIs, 
reflection-based features, and native binaries of apps, and uses machine learning to perform malware detection and family 
identification. To assess RevealDroid against obfuscation, DroidChameleon [12] is used. DroidEvolver [20] uses static 
analysis to extract Android APIs to detect Android malware over time. DroidEvolver constructs a model pool with a set of 
online machine learning models. DroidEvolver could detect 96% of the obfuscated malware created by using 
DroidChameleon. DL-Droid [6] uses deep learning with a state-based input generation approach to detect malicious Android 
applications. It is an automated dynamic analysis system. DroidClone [21] exposes code clones (segments of code that are 
similar) in Android applications to help detect malware. The resistance of DroidClone was also tested by using the 
DroidChameleon tool to generate obfuscated apps. KTSODroid [22] extracts features from Android apps that are 
independent of most obfuscation methods and reflect the behavior of the application. The kernel task structure of the process 
running in memory is used to create the profile for an application which is further used in the classification task. Further, 
they also evaluate the effectiveness of proposed features against four obfuscation techniques; Class encryption, Reflection, 
String Encryption, and Junk Code insertion. MGOPDroid [23] is an efficient anti-obfuscation Android malware detection 
system that extracts opcodes features and uses a novel feature weight calculation method that combines TFIDF and the 
variation in opcode features before and after application obfuscation to select effective anti-obfuscation features of Android 
malware. To create the obfuscated dataset from benign and malicious apps, they use the AVPASS tool [24]. A highly 
effective malware detection system based on machine learning called OBFUSIFIER [25] can maintain its efficacy even when 
malware samples are obfuscated by extracting features based on these portions of codes that are not affected by obfuscation. 
SeqDroid [26] and DANdroid [27] use deep learning to detect obfuscated Android malware.  

 

In [8], graph-based features – code graphs [19]are evaluated against code obfuscation and app hiding techniques [13], 
and a comparison is also presented between the similarity computation of code graphs and Androguard [28], [29]. Code 
graphs [19] are directed graphs that represent the semantic properties of Android apps. The code graph is formed when the 
decompiled code of the Android app is traversed and an API is encountered. Each node of the code graph contains the 
package to which an API belongs. Androguard is an open-source Python tool [29] used to extract static features from 
Android apps. Androguard uses the similarity distance computation based on Normalized Compression Distance (NCD) 
[28]. The dataset used [8] consists of malware from 33 malware families. To create obfuscated malware, three obfuscation 
tools (ADAM [17], AAMO [11], and DroidChameleon [12]) were employed, and taxonomy was defined for the obfuscations 
[8]. A fast-to-compute similarity metric [30] was used to compare the graph-based features of malicious apps with the 
corresponding obfuscated malicious apps.  

Following are the commonly used obfuscation techniques as discussed in ADAM, AAMO, and DroidChameleon, 
mentioned in the preceding para: 

• Repackaging - Android apps are packaged as compressed archive files. Un-compressing the APK files, adding 
empty resources, and re-compressing the file create a functionally identical APK with a different hash. 

• Reassembly - Disassembling and assembling the DEX code (i.e., classes.dex) contained in an APK archive has the 
result of creating a functionally equivalent app yet with a different digest.  

• Re-aligning - For efficient memory mapping, APK files are often aligned to 4-byte boundaries. This produces a 
functionally identical yet slightly different APK. 

• Re-signing - Every APK must be digitally signed before it can be published and run on a device. An APK can be 
re-signed multiple times with different certificates and private keys. A different signature is generated and attached 
to APK. 

• Junk code insertion/insert dead code- This technique includes inserting junk code such as no-operation (NOP) 
instructions, unused random methods, and classes. This results in a change of size or digest of the APK. 

• Debug code deletion/debug code stripping - Debug statements such as .line, .source, .param, etc. are often used for 
debugging. Removing them would not change the functionality of the app but would impact the hash. 

• Unconditional jump insertion – Forward and backward unconditional jumps are added in the code that preserves 
the semantics of the code.  

• Call indirection - Methods calls are redirected to proxy methods that share the same prototype as the original method 
and call the original methods. 

• Code reordering - Instructions are grouped into labeled blocks. These blocks are then rearranged and unconditional 
jumps are inserted to preserve the order of these blocks just like in the original code. 

https://www.sciencedirect.com/topics/computer-science/android-application
https://www.sciencedirect.com/topics/computer-science/android-application
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• Reflection - Static method calls are converted into reflection calls which are resolved at runtime. 

• Opaque predicate insertion - An opaque predicate is a conditional expression whose value is known to the 
obfuscator a priori but still needs to be evaluated at run time and thus is unknown to static analyzers.  

• Renaming - This obfuscator renames fields, methods, class names, or even resources. The corresponding references 
are also updated to keep the code error-free. 

• Encryption – Objects such as strings, native codes, or resources can also be encrypted. The decryption is performed 
every time an object is accessed during runtime. 

 

In the study presented here, we have extended the methodology, taxonomy of obfuscations, and similarity metric used in 
[8] for feature-level analysis of CENDroid. We observed that not only at the feature-level, analysis of obfuscated malware 
detection should also be done at the classifier-level since the model employed also has a big role in classification apart from 
the properties of features alone. Thus, in this study, we have also performed the classifier-level analysis of CENDroid along 
with a feature-level analysis. 

Various techniques have also been developed to hide Android apps in benign apps to evade detection. In [13], malwares 
were created by hiding malicious app inside benign app using techniques such as concatenation, steganography, 
cryptography, and/or obfuscation. The malwares created could easily evade detection by popular anti-malware tools. Thus, 
in our work we have evaluated the capability of CENDroid at the feature and classifier-level, to detect such stealth malwares. 

 

III. METHODOLOGY 

In this section, we present the methodology of evaluating CENDroid against code obfuscation and app hiding 
techniques. This methodology is generic and can be applied to any other malware detection system as well. 

Research question 

In this paper, we propose the solution to the following:  

• How resilient are the features extracted in CENDroid towards code obfuscation and app-hiding techniques? 

• How resilient is the classifier model of CENDroid towards code obfuscation and app-hiding techniques? 

 

The methodology for evaluating CENDroid at the feature-level as well as classifier-level is shown in Fig. 1. CENDroid 

extracts API tags and permissions from Android apps and then uses a combination of cluster-ensemble learning to classify 

apps as benign or malicious [3]. In the cluster-ensemble approach, clustering (k-mode) is performed on the training set to 

divide it into an optimal number of clusters, and then ensemble learning is performed on each cluster [3]. It has been 

demonstrated that the method of using numerous clusters within classified data and learning the boundaries inside these 

clusters by using a series of base classifiers achieves diversified learning [31]. In the case of CENDroid also, the cluster-

ensemble approach has shown improvement in performance metrics over the ensemble approach [3]. To analyze 

CENDroid, this study extracts the API tags and permissions features from the dataset of Android apps and performs 

feature-level analysis to evaluate the resilience of these features against code obfuscations and app hiding techniques. 

Another evaluation is performed at the classifier-level to analyze how resilient the cluster-ensemble classification 

algorithm proposed in CENDroid is against code obfuscations and app hiding techniques. For obfuscations, three tools – 

ADAM, DroidChameleon, and AAMO are used. 
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Fig. 1 Methodology for evaluating CENDroid 

 

Feature-level analysis 

At the feature-level, API tags and permissions are extracted from the original malware and its obfuscated apps. For 
creating obfuscated apps of malware, ADAM, DroidChameleon, and AAMO obfuscating tools are used, and for creating 
apps with hidden malwares, the techniques proposed in [13] namely concatenation, obfuscation, cryptography, and/or 
steganography have been employed. Single-level obfuscations - Level A (obfuscations that do not change the source code), 
Level B (obfuscations that change the source code), Level C (obfuscations that perform renaming), and Level D 
(obfuscations that perform encryption) as well as multiple obfuscations (Level AB, AC, AD, ABC, and ABCD) were 
performed as done in [8]. The features of the original malware app and its obfuscated versions are then compared using a 
similarity metric. A similar experiment is performed for app hiding techniques in which malwares were created by using a 
cover benign app in which an image in which the malicious app code is hidden, was stored. Using reflection and dynamic 
code loading (using DexClassLoader), the malicious app code was then extracted from the images and loaded dynamically 
to perform malicious behavior [13]. Since, in these hiding techniques, a benign app is converted into malware, a comparison 
of the malware created is made with the cover benign app instead of the original malicious app to analyze whether API tags 
and permission features can detect these hidden malwares or not. Thus, API tags and permissions are extracted from the 
cover benign app and also from the malwares created by hiding malicious code in images and hiding them in the cover 
benign app using various techniques, and then a similarity metric is used to analyze the difference. 

The similarity metric used in [8] for comparing graph-based features can even be used for the API tags and permissions 
features. The API tags and permissions features are binary vectors. Hence, the same similarity metric can also be used for 
them. The interpretation is as follows. 

Similarity metric between two binary vectors 𝐴 and 𝐵 computed as [30]:  

𝒔𝒊𝒎(𝑨, 𝑩) =  
𝟐 ×  |𝑨 ∩ 𝑩|

|𝑨| + |𝑩|
                                                                                                                                   (𝟏) 

The similarity metric can take values between 0 and 1. The time complexity of this similarity computation is 𝑂(𝑐), where 
c is a constant, as the features are binary vectors of fixed length, and the computation involves only intersection, addition, 
multiplication, and division operations. It takes the value 1 when the two binary vectors are similar and 0 when there is no 
similarity. We have used the same threshold for similarity calculation i.e., 0.8, as used in the case of graph-based features 
[8]. Using Eq. 1, a similarity score ≥ 0.8 implies that an app is highly similar to another app. For obfuscation, a high similarity 
score is required between malware and its obfuscated version to prove resilience towards obfuscation. However, in the case 
of app hiding techniques, a low similarity score is required between the benign app and its malicious version created by 
hiding inside an image, to prove that the features reflect the introduction of app hiding techniques. Further, we also present 
the comparison of API tags and permissions features evaluation against obfuscation and app hiding techniques with that of 
code graphs [19] and Androguard [29] which has been reported in [8].  

CENDroid 

Feature-Level 

(API Tags and 
Permissios)

Code 
Obfuscation 

ADAM

DroidChameleon

AAMOApp Hiding 
Techniques

Classifier-level

(Cluster-Ensemble 
Classifier)

Code 
Obfuscation

ADAM

DroidChameleon

AAMOApp Hiding 
Techniques
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Classifier-level analysis 

At the classifier-level, CENDroid is first trained with a dataset consisting of the original malwares [8]. Then four test sets 
comprising of obfuscated malware created using the three tools mentioned above [8], and malware created via app hiding 
techniques described in [13] are used, namely: 

Test set 1 – This test set comprises all the obfuscated apps generated by the ADAM tool. 

Test set 2 – This test set comprises all the obfuscated apps generated by the DroidChameleon tool. 

Test set 3 – This test set comprises all the obfuscated apps generated by the AAMO tool. 

Test set 4 – This test set comprises all the obfuscated apps generated by the app hiding techniques. 

Then predictions are made on these test sets by CENDroid to evaluate how accurately these malicious test sets can be 
detected by CENDroid. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we present the results obtained on evaluating the resilience of CENDroid against obfuscation and app 
hiding techniques. We have used the dataset of 33 malware families as used in [8] for performing code obfuscation. For 
evaluation against app hiding techniques, the dataset of 16 malwares (8 for malwares created using PNG image + 8 for 
malwares created using JPEG image) developed in [13] was used. 

Feature-level resilience 

We perform a comparison of malware apps and their obfuscated versions created by using the three obfuscators and also 
benign app and its malicious versions created by using app hiding techniques. 

Resilience of features against the ADAM tool 

The dataset of 330 obfuscated malicious apps (10 obfuscations performed for each of the 33 malware families using 
the ADAM tool) [8] was used. ADAM tool can perform level A, B, C, D, AB, ABC, and ABCD obfuscations. API tags 
and permissions were extracted from the original APK and the obfuscated version and compared. The API tags and 
permissions features displayed high immunity with a perfect similarity score of 1 against all the obfuscations (single as 
well as multiple) as performed by the ADAM tool. The reason for such high similarity scores is attributed to the level of 
abstraction these features offer. Being syntax-related, they are not dependent on the semantics of the code. Obfuscations 
such as inserting defunct code, changing the CFG, encrypting strings, etc. have no effect on the usage of API tags and 
permissions used in an app since obfuscations retain the functionality an app serves. Whatever API calls and permissions 
are present in an app, the same shall also be present in its obfuscated version. As compared to the average similarity scores 
of code graphs and Androguard, API tags, and permissions displayed better resilience to obfuscations performed using the 
ADAM tool as shown in Table I. As compared to code graphs and Androguard, API tags, and permissions feature sets 
performed extremely well especially when multiple obfuscations are applied. The resilience of code graphs and Androguard 
drops for obfuscations involving level C (renaming) and level D (encryption). 

Resilience of features against the DroidChameleon tool 

In this experiment, a dataset of 429 obfuscated malicious apps (for each of the 33 malware families, 13 obfuscations 
performed by the DroidChameleon tool) [8] was used. DroidChameleon tool can perform level AB, AC, AD, ABC, and 
ABCD obfuscations. In Fig 2, the heatmap representation of similarity scores for obfuscations performed using the 
DroidChameleon tool are displayed for each malware family. In the case of DroidChameleon, the API tags and permissions 
feature set again scored 1 for the similarity between the original app and all the single level obfuscated apps for a similar 
reason as given for ADAM. For multiple obfuscations, the average similarity scores were above the threshold but not 1. 
For obfuscations that involved reflection, the API tags and permissions feature set did get reduced a little but the impact 
was still above the threshold. As compared to code graphs and Androguard, API tags, and permissions feature set again 
outperformed the obfuscations performed using the DroidChameleon tool as shown in Table II. Code graphs also got 
impacted due to reflection obfuscation and the impact was large enough to cause the value to drop below the threshold. 
Androguard got impacted a lot not only by reflection but many other obfuscations. The average similarity scores of code 
graphs and Androguard were below the threshold for many obfuscations. 
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TABLE I. COMPARISON OF AVERAGE SIMILARITY SCORES FOR ADAM OBFUSCATIONS 

AP – API tags and Permissions, CG – Code Graphs, AG – Androguard 

 

 

* Includes level A obfuscations – Re-sign and Rebuild 

Fig 2. Similarity scores of API tags and permissions for DroidChameleon obfuscations 

Level 

A 

(Obfuscations that do not 

change the source code) 

B  

(Obfuscations 

that change the 

source code) 

C (Obfuscations 

that perform 

renaming) 

D (Obfuscations 

that perform 

encryption) 

AB ABC ABCD 

A
v
e
ra

g
e
 

S
im

il
a

ri
ty

 

S
c
o

re
s 

R
eb

u
il

d
 

R
e
-s

ig
n

 

A
li

g
n

m
e
n

t 

In
se

rt
 d

ea
d

 

c
o
d

e 

R
e
n

a
m

in
g
 

M
o
d
if

y
 C

F
G

 

E
n

c
ry

p
ti

o
n

 

R
eb

u
il

d
 +

 

In
se

rt
 d

ea
d

 

c
o
d

e 

R
eb

u
il

d
 +

 

In
se

rt
 d

ea
d

 

c
o
d

e
 +

  

M
o
d
if

y
 C

F
G

 

R
eb

u
il

d
 +

 

In
se

rt
 d

ea
d

 

c
o
d

e
 +

  

M
o
d
if

y
 C

F
G

 +
 

E
n

c
ry

p
ti

o
n

 

AP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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AG [8] 1.00 1.00 1.00 0.99 1.00 0.80 0.84 0.99 0.80 0.70 
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TABLE II.COMPARISON OF AVERAGE SIMILARITY SCORES FOR DROIDCHAMELEON OBFUSCATIONS 
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AP 1.00 1.00 1.00 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.85 

CG [8] 1.00 1.00 0.94 0.62 0.86 0.78 0.98 0.96 1.00 0.95 1.00 0.61 0.60 

AG [8] 0.71 1.00 0.96 0.44 0.16 0.31 1.00 0.99 1.00 0.82 1.00 0.44 0.38 

* Includes level A obfuscations – Re-sign and Rebuild 

AP – API tags and Permissions, CG – Code Graphs, AG – Androguard 

 

 

Resilience of features against the AAMO tool 

In this experiment, a dataset of 726 obfuscated malicious apps (for each of the 33 malware families, 22 obfuscations 
performed by the AAMO tool) [8] was used. AAMO tool can perform Level A, B, C, D, AB, ABC, and ABCD 
obfuscations. Fig. 3 presents the AAMO results in a heatmap representation of similarity scores for obfuscations performed 
using the AAMO tool for each malware family. The API tags and permissions feature set confronted all the types of 
obfuscations performed using the AAMO tool. It also performed much better than the code graphs and Androguard as 
shown in Table III. The minimum average similarity score of API tags and permissions was 0.99 while that of code graphs 
and Androguard was 0.64 and 0.18 respectively for the obfuscations performed using the AAMO tool.  

Thus, for all three obfuscation tools, API tags and permissions feature set was highly robust in being resilient to changes 
due to obfuscations. The experimental results show that API tags and permissions feature sets are not affected by single-
level obfuscations. However, they do get affected slightly when multiple obfuscations are applied. For all three obfuscation 
tools, all the average similarity scores of the API tags and permissions feature sets were > 0.85.  

API tags contain the package-level information of the sensitive APIs that are being used in an app (Badhani&Muttoo, 
2019c). Since the idea behind obfuscation is to make the code difficult to understand yet retain the behavior of the app 
that’s why the sensitive APIs also remain the same in the obfuscated apps. This generalization of API tags gives them an 
edge to confront obfuscation strongly. The permissions requested by an app also remain the same even after obfuscation to 
maintain the functionality. Thus, even permissions are not much affected by obfuscations.   
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Fig. 3 Similarity scores of API tags and permissions for AAMO obfuscations 
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AP 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 

CG [8] 1.00 1.00 1.00 0.97 1.00 0.90 0.90 0.86 1.00 0.77 0.85 1.00 0.99 0.97 1.00 1.00 1.00 0.95 0.84 0.77 0.75 0.64 

AG[8] 1.00 1.00 1.00 0.74 1.00 0.87 0.66 0.33 0.62 0.20 0.29 1.00 0.94 1.00 0.94 0.94 1.00 0.94 0.81 0.20 0.20 0.18 

AP – API tags and Permissions, CG – Code Graphs, AG – Androguard 

 

 

Resilience of features against app hiding techniques 

Table IV shows the similarity scores of the API tags and permissions feature set of the benign app with its malware 
variants created in [13] by hiding a malicious app inside an image using 8 techniques. Both PNG and JPEG images were 
used to hide the malicious app. 
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Features extracted in CENDroid (API tags and permissions) also confront the app hiding techniques with great strength 
with all the similarity values < 0.8. This signifies that there is less similarity between the benign app and its malicious 
versions since various API packages and permissions have been added in building these malicious versions which have 
been reflected in these features also. The threshold value was below 0.8 even for code graphs and Androguard.  

Classifier-level resilience 

For training CENDroid, we have used those datasets which contain the original samples of the malicious family that 
were obfuscated using the obfuscation tools [8]. The test results obtained on the four test sets as described in created are 
shown in Table V for CENDroid. All the cluster-ensemble methods of CENDroid (majority vote, weighted majority vote, 
and stacking) were able to detect all the obfuscated apps (100%) for all four test sets as shown in Table V. Thus, such high 
detection rates prove that not only at feature-level but also at classifier-level, CENDroid has displayed high resilience 
against obfuscation as well as app hiding techniques. The reason can be attributed to the strength of API tags and 
permissions feature set against obfuscation and app hiding techniques coupled with the highly accurate classifier of 
CENDroid. Thus, we propose that the resilience of features against obfuscations and other malware evading techniques 
must be evaluated as the resilience is propagated to the classifier as well thus resulting in accurate malware detection 
systems. 

TABLE IV COMPARISON OF SIMILARITY SCORES OF APP HIDING TECHNIQUES 

Features Image 

Technique for hiding malicious app inside an image 

Concatenate 
Concatenate 

&Obfuscate 

Concatenate 

& 

Cryptography 

Concatenate, 

Cryptography, 

& Obfuscate 

Steganography 
Obfuscate & 

Steganography 

Cryptography & 

Steganography 

Cryptography, 

Steganography,  

&Obfuscate 

AP 
PNG 0.69 0.69 0.69 0.69 0.67 0.67 0.67 0.67 

JPEG 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 

CG  [8] 
PNG 0.69 0.69 0.69 0.69 0.62 0.62 0.62 0.62 

JPEG 0.53 0.53 0.53 0.53 0.62 0.62 0.62 0.62 

AG [8] 
PNG 0.70 0.70 0.70 0.70 0.58 0.58 0.58 0.58 

JPEG 0.56 0.56 0.56 0.56 0.17 0.17 0.17 0.17 

AP – API tags and Permissions, CG – Code Graphs, AG – Androguard 

 

TABLE V PREDICTION OF CENDROID 

Test Set 
Number of 

malicious apps 

Number of malicious apps detected by the Cluster-

ENsemble Classifier (CENDroid) 

Majority 

Voting 

Weighted 

Majority Voting 

Stacking 

Test Set 1  

(ADAM) 
330 330 330 330 

Test Set 2 (DroidChameleon) 429 429 429 429 

Test Set 3  

(AAMO) 
726 726 726 726 

Test Set 4  

(App Hiding Techniques) 
16 16 16 16 

 

Thus, in this study, we were able to evaluate the resilience of CENDroid against code obfuscations and app hiding 
techniques and a comparison with other approaches (Androguard and Code graphs) is also presented. The framework for 
evaluating Android malware detection systems presented in this study has the advantage of providing a holistic view of 
how the features behave and how the performance metrics of the classification algorithm change when presented with 
obfuscations and app hiding techniques. The approach mentioned in [8] is limited to feature-level analysis. Thus, this 
research can help in identifying areas (at the feature-level or classifier-level or both) where more focus is required to 
improvise the Android malware detection systems against obfuscations and app hiding techniques. 
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V. CONCLUSIONS 

In this paper, an Android malware detection system – CENDroid is evaluated against code obfuscation and app hiding 
techniques at the feature-level as well as at the classifier-level. At the feature-level, the features used in CENDroid (API tags 
and permissions) are extracted from the malware and their obfuscated variants. Experimental results show that API tags and 
permissions feature sets confronted all the single as well as multiple obfuscations by reporting a high degree of similarity 
between the original malware and its obfuscated variants. Low similarity scores between a benign app and its malicious 
variants were reported by the permissions and API tags feature set for the app hiding techniques and this was desirable as 
well. As compared to code graphs and Androguard, API tags, and permissions feature sets performed better, especially for 
multiple obfuscations for all three obfuscation tools. At the classifier-level, three test sets of obfuscated apps (created by 
using ADAM, DroidChameleon, and AAMO) and a fourth test set of stealth malwares (created by using app hiding 
techniques) were used to test the models trained by CENDroid. CENDroid could detect all the malware in each of the four 
test sets. Thus, CENDroid, being syntax-based, is immune to semantic-level changes that preserve the syntax of the app. 
Robust obfuscation resilience of features propagates to the classifier as well and results in highly accurate malware detection 
systems. 
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